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Abstract
By means of a well-established algebraic framework, Rogers–Szegö functions
associated with a circular geometry in the complex plane are introduced
in the context of q-special functions, and their properties are discussed in
detail. The eigenfunctions related to the coherent and phase states emerge
from this formalism as infinite expansions of Rogers–Szegö functions, the
coefficients being determined through proper eigenvalue equations in each
situation. Furthermore, a complementary study on the Robertson–Schrödinger
and symmetrical uncertainty relations for the cosine, sine and nondeformed
number operators is also conducted, corroborating, in this way, certain features
of q-deformed coherent states.

PACS numbers: 02.30.Gp, 02.20.Uw, 03.65.Ca

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ramanujan’s work and subsequent studies on the q-special functions certainly represent
an important chapter within the several astonishing achievements reached during recent
decades in mathematics [1–10]. Another particular but no less remarkable research branch
developed in parallel by mathematicians and physicists is focused on quantum groups and/or
q-deformed algebras [11, 12]. Since q-deformed algebras encompass the description of a
wide variety of symmetries, if one compares with those studied in the standard Lie algebras,
it becomes natural to employ this powerful mathematical tool to investigate certain complex
symmetries associated with nontrivial physical systems in an appropriate way. Hence, several
contributions have appeared in the literature, from time to time, presenting a plethora of original
results directly related to specific problems originating from solvable statistical mechanics
models [13], quantum inverse scattering theory [14], nuclear physics [15, 16], molecular
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physics [17], some q-deformed extensions of quantum mechanics [18–22] and quantum optics
with emphasis on coherent states [23–30], as well as recent applications in trapped ions by laser
fields [31] and also in the Jaynes–Cummings model [32]. Furthermore, it is worth mentioning
that this range of possible applications can also be extended to deformed superalgebras [33],
knot theories [34] and non-commutative geometries [35].

In this scenario, there are approaches that connect q-special functions and q-deformed
algebras which deserve to be elucidated because they exhibit a unifying quantum-algebraic
framework for the realizations and/or representations of those algebras. For example, within
the context of Lie algebras and their q-analogues, Feinsilver [36] has discussed how the
three-term recurrence relations related to orthogonal polynomials can be used to obtain certain
realizations in terms of raising and lowering operators. Floreanini and Vinet [37] showed
that suitable operators acting on vector spaces of functions in one complex variable can be
considered as possible realizations of the slq(2) and q-oscillator algebras. Pursuing this formal
line of theoretical investigation, some authors [38–40] also presented significant contributions
for a special class of orthogonal polynomials, which are recognized in the literature as Rogers–
Szegö (RS) and Stieltjes–Wigert (SW) polynomials [41–43]. The mathematical motivation
for this specific choice of polynomials is directly associated with the q-oscillator algebra,
namely, both the polynomials are viewed as concrete representations of the Iwata–Arik–Coon–
Kuryshkin (IACK) algebra [20], and their respective realizations are expressed by means of
Jackson’s q-derivative [44, 45]. In addition, while the SW polynomials are orthogonalized on
the full real line, the RS polynomials are defined upon the complex plane and orthogonalized
on the unit circle through a particular measure [40, 43]. This fundamental feature intrinsic
to the RS polynomials has a potential connection with angular representations in quantum
mechanics, such a fact being interpreted by us as an effective gain in the debate on the polar
decomposition of the annihilation operator in quantum optics [46–50].

The main goal of this paper is to present a consistent algebraic framework based on
a particular set of q-special functions which allows us to go further in our comprehension
of the phase operator problem and its different representations in quantum mechanics. For
this purpose, we first review certain essential mathematical properties associated with the RS
polynomials which permit us to establish two new (as far as we know) integral representations
for such polynomials involving the finite q-Pochhammer symbol and the SW polynomials. In
the following, we define our object of study (here named RS functions) through a product of
two complex functions with distinct essential features, namely �RS

n (z; q) := Rn(z; q)M (z; q).
Indeed, while the first one is a RS polynomial (at least of the normalization coefficient), the
second one is responsible for the corresponding weight function which is connected with the
decomposition of the Szegö measure in the complex plane. An immediate consequence of this
particular sort of definition refers to its inherent orthogonality property, that is, it preserves the
orthogonality relation verified for the RS polynomials. Another important property concerns
the completeness relation for the RS functions that is presented in this context via a bilinear
kernel [38]. The q-calculus framework is then employed to carry out a careful analysis of
each aforementioned complex function, and the results originated from this analysis are used
to derive the q-differential forms of the lowering, raising and number operators. It is worth
stressing that the algebraic approach developed here for the RS functions leads us to obtain,
in principle, not only an alternative representation for the IACK algebra but also an inherent
realization.

The second part of this paper is focused basically on the construction process of coherent
and phase states in accordance with the quantum-algebraic framework previously discussed.
So, our first application has as reference guide the mathematical approach developed in [51]
for an important class of coherent states, namely, those obtained from a determined eigenvalue
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equation for a given annihilation operator [23–31]. The eigenfunctions derived from this
particular procedure are then expressed as an infinite expansion in terms of the RS functions
whose coefficients satisfy a set of mathematical prerequesites that leads us to obtain, as a by-
product, the excitation probability distribution for the q-deformed coherent state. Expressing
in a clearer way, once the physical system of interest can be initially prepared in the q-
deformed coherent state, this result allows us to obtain the excitation probability distribution
(here labelled by the degree of excitation n of the q-deformed harmonic oscillator) for such
a system. Furthermore, we discuss in detail some intrinsic properties of this definition. For
the phase states and their connections with the angular representations in quantum mechanics,
we have constructed the q-deformed eigenstates for the cosine and sine operators following
the Carruthers–Nieto approach [47], and also presented the orthogonality and completeness
relations for each situation. To complete this work, we have applied our results in order to
calculate, via q-deformed coherent states, certain mean values associated with the cosine and
sine operators which allow us to carry out a detailed study on the Robertson–Schrödinger and
symmetrical uncertainty relations.

This paper is structured as follows. In section 2, we establish a few essential mathematical
properties and also derive two additional integral representations for the RS polynomials.
In section 3, we introduce the RS functions

{
�RS

n (z; q)
}

n∈N
through the product of two

basic complex functions whose distinct characteristics lead us to obtain a wide set of
results which constitutes our quantum-algebraic framework. Section 4 is dedicated to the
construction process of q-deformed coherent states related to the RS functions, where certain
properties (for instance, the overlap probability and completeness relation) are discussed
in detail. Moreover, we obtain in section 5 the respective eigenstates of the cosine
and sine operators, as well as presenting some relevant results for each situation. The
discussion on the Robertson–Schrödinger and symmetrical uncertainty relations involving
such operators is presented in section 6. Finally, section 7 contains our summary and
conclusions.

2. Explanatory notes on the RS polynomials

In order to make the presentation of this section more self-contained, let us initially review
certain essential mathematical prerequisites of the RS polynomials, for then establishing,
subsequently, two integral representations which permit us to connect such polynomials with
the finite q-Pochhammer symbol and the SW polynomials. It is important to emphasize that
the basic notation employed in our exposition follows some well-known textbooks on special
functions, where, in particular, the q-series or Eulerian series are introduced within the context
of the theory of partitions and/or basic hypergeometric series [7–10].

Definition. Let {Hn(z; q)}n∈N designate a set of polynomials with 0 < q < 1 and z ∈ C. In
particular, the RS polynomials are defined through the finite series [41, 42]

Hn(z; q) :=
n∑

k=0

[
n

k

]
q

zk, (1)

where the q-binomial coefficients (also known as Gaussian polynomials)[
n

k

]
q

:= (q; q)n

(q; q)k(q; q)n−k

= [n]q!

[k]q![n − k]q!
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are expressed in terms of the finite q-Pochhammer symbol

(a; q)n :=
n−1∏
j=0

(1 − aqj ) (a ∈ C)

or written as a function of the q-factorial [n]q! := (1 − q)−n(q; q)n.

It is worth noting that the generating function associated with Hn(z; q) is given by the
specific Eulerian series G(w, z; q) := [(w; q)∞(wz; q)∞]−1 for |wz| < 1. Thus, for future
use in the text, in order to establish a consistent proof of this statement, let us first consider the
particular case G(w, 0; q) = [(w; q)∞]−1. In this situation, the Cauchy theorem states that,
for |w| < 1 and 0 < q < 1,G(w, 0; q) is reduced to the infinite series [7]

G(w, 0; q) =
∑
n∈N

wn

(q; q)n
(w ∈ C).

This result leads us to propose that G(w, z; q) admits a similar expression, where now the
summand is multiplied by the coefficient An(z; q),

G(w, z; q) =
∑
n∈N

An(z; q)
wn

(q; q)n
. (2)

Indeed, equation (2) has the essential features that we need for our purposes since the infinite
product G(w, z; q) is uniformly convergent for all q inside |wz| � 1 − ε, and therefore it
defines a function of w and z analytic in |wz| < 1. Furthermore, the identity [43]

G(qw, z; q) = (1 − w)(1 − qw)G(w, z; q)

allows us to show that {An(z; q)}n∈N satisfies a three-term recurrence relation

An+1(z; q) = (1 + z)An(z; q) − (1 − qn)zAn−1(z; q), (3)

where A0(z; q) = 1 and A1(z; q) = 1 + z. The remaining terms for n � 2 determine a set of
polynomials expressed explicitly in terms of z and q, whose closed formula coincides exactly
with equation (1); consequently, An(z; q) ≡ Hn(z; q).

Next, let us introduce some properties related to the RS polynomials where special
attention will be paid to their orthogonality property. Adopting a particular parametrization
for the complex variable z, Szegö [42] showed that {Hn(z; q)}n∈N can be orthogonalized on
the circle through a specific measure which coincides with the Jacobi ϑ3-function evaluated at
continuous arguments [52], that is,∫ π

−π

Hm

( − q− 1
2 e−iϕ; q

)
Hn

( − q− 1
2 eiϕ; q

)
ϑ3

(
ϕ

2

∣∣∣∣q 1
2

)
dϕ

2π
= (q; q)n

qn
δm,n. (4)

Subsequently, Carlitz [43] generalized such an equation by fixing the integration measure and
considering different arguments of Hn(z; q). Since then, different authors have worked on
this theme and showed some interesting peculiarities of the RS polynomials. For example,
Macfarlane [18] has discussed the quantum group SUq(2) through a mathematical procedure
that resembles the approach developed by Schwinger [53] for the quantum theory of angular
momentum. In particular, the author showed how the coordinate representation of the
q-deformed harmonic oscillator can be used in order to obtain a wavefunction which is
expressed in terms of RS polynomials. Moreover, Atakishiyev and Nagiyev [38] derived an
important orthogonality relation on the full real line for such polynomials, and also established
a special link with the SW polynomials by means of a Fourier transform. Recently, Galetti and
coworkers [40] have shown didactically both the orthogonality relations for the RS and SW
polynomials, as well as obtained the explicit realizations of the raising and lowering operators
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for each case1; in addition, the authors also proposed a Wigner function related to the RS
polynomials which leads us to determine a set of well-behaved marginal distribution functions
with compact support for the angle and action variables.

The next property to be discussed allows us to establish a connection between the finite
q-Pochhammer symbol and the RS polynomials. For this task let us initially express, by means
of the Cauchy theorem, (a; q)n as a sum involving finite powers of the complex variable a,
namely

(a; q)n =
n∑

k=0

[
n

k

]
q

q
1
2 k(k−1)(−a)k.

This result is extremely important in our considerations since it leads us to verify that∫ π

−π

Hn

( − q− 1
2 areisϕ; q

)
ϑ3

(
uϕ

∣∣q 2u2

s2
) dϕ

2π
= (ar; q)n, (5)

where r is an arbitrary power of a and s
2u

is an integer number—note that the right-hand side
of equation (5) does not depend on s and u in this situation. Thus, if one substitutes r = 1
in such a case, this identity can be considered as a possible integral representation for the
finite q-Pochhammer symbol. Another interesting additional property consists in establishing
an integral representation for the RS polynomials through an adequate transformation kernel
Pr (ω; q), that is,∫ ∞

0
(−qrzω; q)nPr (ω; q)dω = Hn(z; q) (6)

with

Pr (ω; q) := m√
π

ωr− 3
2 exp

[
− 1

4m2

(
r − 1

2

)2

− m2 ln2(ω)

]
(m ∈ R)

and q = exp
(− 1

2m2

)
. In order to demonstrate such an equation, it is sufficient to know that∫ ∞

0
ωkPr (ω; q) dω = q− 1

2 k(k−1)−rk (7)

for the following proper parametrization: ω = exp
(

x
m2

)
(−∞ < x < ∞). It is worth noting

that Pr (ω; q) not only encompasses certain particular cases studied by Carlitz [43], but also
can be used to orthogonalize the SW polynomials.

Let us derive now a last integral representation for the RS polynomials which has, as an
integrand, the product of the SW polynomials

Gn(q
n+rzω; q) :=

n∑
k=0

[ n

k

]
q
qk(k−n)(qn+rzω)k (8)

and the transformation kernel

Yr (ω; q) := m√
2π

ω
r
2 −1 exp

[
− r2

8m2
− m2

2
ln2(ω)

]
.

In this situation, if one considers the parametrizations used in the previous case for q and ω,
it is easy to show that∫ ∞

0
ωkYr (ω; q) dω = q−k(k+r), (9)

1 It is worth mentioning that Ismail and Rahman [39] slightly modified the argument of Hn(z; q) (namely,
z → q−1/2z) with the aim of deriving the respective q-differential forms related to the raising and lowering operators.
This particular procedure has then produced certain ladder operators for the RS polynomials whose formal expressions
differ from those obtained in [40].
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which leads us to validate the integral representation∫ ∞

0
Gn(q

n+rzω; q)Yr (ω; q) dω = Hn(z; q). (10)

In such a case, contrasting with the relation Gn(z; q) = Hn(z; q−1), the transformation kernel
Yr (ω; q) permits us to identify a new link between the SW and RS polynomials through the
integral representation (10). Note that equations (6) and (10) represent, in particular, two
new additional results within a wide variety of formal properties obtained by Carlitz [43] for
{Hn(z; q)}n∈N. Next, we will investigate a special family of q-orthogonalized functions (here
named as the RS functions) with the aim of obtaining a set of mathematical properties which
leads us to formally characterize its associated algebraic structure.

3. Algebraic properties of the RS functions

In this section, we establish some preliminary mathematical results inherent to the RS
functions. As a first step, we obtain a decomposition formula for the Szegö measure in
the complex plane which leads us to define a weight function E (ϕ; q) related to our object of
study. In the following step, we construct explicitly the realizations of raising and lowering
operators for such functions by means of a specific definition of Jackson’s q-derivative, as well
as discuss the implications of this algebraic approach.

3.1. Preliminaries

The measure employed in equation (4) to orthogonalize the RS polynomials admits an
expression of the form

ϑ3

(
ϕ

2

∣∣∣∣q 1
2

)
=

∑
	∈Z

q
1
2 	2

ei	ϕ = 1 + 2
∑
	∈N∗

q
1
2 	2

cos(	ϕ). (11)

Since equation (11) defines a strictly positive function on the interval ϕ ∈ [−π, π ] for any
q ∈ (0, 1), let us properly employ the addition formula [52]

ϑ3(x + y|q)ϑ3(x − y|q)ϑ2
3 (0|q) = ϑ2

3 (x|q)ϑ2
3 (y|q) + ϑ2

1 (x|q)ϑ2
1 (y|q)

with 2π -period for x = y = ϕ

4 and q = q
1
2 , in order to obtain

ϑ3

(
ϕ

2

∣∣∣∣q 1
2

)
ϑ3

3

(
0
∣∣q 1

2
) = ϑ4

3

(
ϕ

4

∣∣∣∣q 1
2

)
+ ϑ4

1

(
ϕ

4

∣∣∣∣q 1
2

)
.

So, if one considers the complex function (up to a phase factor)

E (ϕ; q) := [
ϑ3

(
0
∣∣q 1

2
)]− 3

2

[
ϑ2

3

(
ϕ

4

∣∣∣∣q 1
2

)
+ iϑ2

1

(
ϕ

4

∣∣∣∣q 1
2

)]
, (12)

it is immediate to verify that (11) can also be written as a product of E (ϕ; q) by its respective
complex conjugate. Figure 1 shows the plots of the equipotential curves related to (a)
Re [E (ϕ; q)] and (b) Im [E (ϕ; q)] for the variables ϕ and q within the intervals [−π, π ] and
(0, 1), respectively. Note that, in particular, plot (a) presents a peak at the point ϕ = 0 and
q → 1, this behaviour being the same of that observed in our numerical investigations for
the equipotential curves associated with the Szegö measure. In counterpart, plot (b) has two
symmetric peaks located at the points ϕ = −π, π and q → 0, such distinct behaviour being
now explained due to the presence of the Jacobi ϑ1-function in equation (12). Consequently,
the product E (ϕ; q)E ∗(ϕ; q) not only retains the pattern verified in plot (a) but also confirms
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(a) (b)

Figure 1. Plots of equipotential curves associated with the (a) real and (b) imaginary parts of the
complex function E (ϕ; q) for ϕ ∈ [−π, π ] and q ∈ (0, 1). The different patterns observed in both
pictures are directly related to the distinct behaviours of the Jacobi ϑ3- and ϑ1-functions used to
decompose the Szegö measure in the product E (ϕ; q)E ∗(ϕ; q).

an important property for this integration measure, that is, its decomposition into the complex
plane. Next, we define properly our object of study.

Definition. Let us initially introduce the RS functions by means of the product

�RS
n (z; q) :=

[
qn

2π(q; q)n

] 1
2

Hn(z; q)M (z; q) = Rn(z; q)M (z; q), (13)

where Rn(z; q) denotes the RS polynomials (at least of the normalization coefficient), and

M (z; q) = [
F
(−q− 1

2 ; q
)]− 3

2 [F2(z; q) + iG2(z; q)]

represents a weight function with

F(z; q) =
∑
	∈Z

(−i)	q
1
2 	(	+ 1

2 )z
	
2 , (14)

G(z; q) = −
∑
	∈Z

i	+ 1
2 q

1
2 (	+ 1

2 )(	+1)z
1
2 (	+ 1

2 ). (15)

Thus, for z = −q− 1
2 eiϕ fixed, it is immediate to see that M

(−q− 1
2 eiϕ; q

) ≡ E (ϕ; q) since
equations (14) and (15) coincide, respectively, with the ϑ3- and ϑ1-functions. In addition, this
particular parametrization also permits us to verify that∫ π

−π

�RS
m

∗(−q− 1
2 eiϕ; q

)
�RS

n

(−q− 1
2 eiϕ; q

)
dϕ = δmn. (16)

Hence,
{
�RS

n (z; q)
}

n∈N
features a set of well-defined functions in the complex plane which

are orthogonalized on the unit circle.
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The proof of the completeness relation associated with
{
�RS

n (z; q)
}

n∈N
follows basically

the formal mathematical treatment sketched in [5, 38]. For this task, we first define the bilinear
kernel

Kε(w, z; q) :=
∑
n∈N

εn�RS
n

∗
(w; q)�RS

n (z; q) |ε| < 1 (17)

which can be evaluated by means of the auxiliary relation [7]∑
n∈N

Hn(w
∗; q)Hn(z; q)

(qε)n

(q; q)n
= (q2ε2w∗z; q)∞

(qεw∗z, qεw∗, qεz, qε; q)∞
,

namely2

Kε(w, z; q) = (q2ε2w∗z; q)∞M ∗(w; q)M (z; q)

2π (qεw∗z, qεw∗, qεz, qε; q)∞
.

Note that for z = −q− 1
2 eiϕ and w = −q− 1

2 eiβ,Kε(w, z; q) is expressed as

Kε(β, ϕ; q) =
(
qε2ei(ϕ−β); q

)
∞E ∗(β; q)E (ϕ; q)

2π
(
ε ei(ϕ−β),−q

1
2 ε e−iβ,−q

1
2 ε eiϕ, qε; q

)
∞

. (18)

Besides, if one takes into account the orthogonality relation (16), it is immediate to show that
equation (18) obeys the following properties:∫ π

−π

Kε(β, ϕ; q)�RS
n

(−q− 1
2 eiβ; q

)
dβ = εn�RS

n

(−q− 1
2 eiϕ; q

)
, (19)

∫ π

−π

Kε(β, ϕ; q)Kε′(γ, β; q) dβ = Kεε′(γ, ϕ; q). (20)

Thus, any well-behaved (or at least piecewise continuous) function F(z) can now be properly
expanded in terms of the complete set of functions

{
�RS

n (z; q)
}

n∈N
.

Next, we discuss certain relevant additional points associated with the definition proposed
for �RS

n (z; q), which will be useful in the descriptive process of its formal properties.

(i) Guided by the analogy with the usual harmonic oscillator (HO) on the line, where the
normalized wavefunction [54, p 151]

�HO
n (x;α) =

( α

π1/22nn!

) 1
2
Hn(αx)e− 1

2 (αx)2
(n ∈ N)

is written in terms of the Hermite polynomials Hn(αx) and the Gaussian weight function
exp

[ − 1
2 (αx)2

]
(note that α is the HO width and also acts as a controlling parameter in

this case), we may guess that (13) plays a similar role and the angular density function∣∣�RS
n

(−q− 1
2 eiϕ; q

)∣∣2
is, as a matter of fact, a good candidate in describing a phase

distribution for a q-deformed HO, with q being a parameter that controls the distribution
width, and is therefore responsible for squeezing effects [40]. In order to reinforce such

2 The notation (a1, a2, . . . , ar ; q)∞ ≡ (a1; q)∞ · (a2; q)∞ · . . . · (ar ; q)∞ here employed represents the generalized
q-Pochhammer symbol with {a1, a2, . . . , ar } ∈ C.

8



J. Phys. A: Math. Theor. 42 (2009) 375206 M A Marchiolli et al

− 3 − 2 − 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ϕ

P
ha

se
D

is
tr

ib
ut

io
n

n =0

− 3 − 2 − 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

ϕ

P
ha

se
D

is
tr

ib
ut

io
n

n =1

− 3 − 2 − 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

ϕ

P
ha

se
D

is
tr

ib
ut

io
n

n= 2

− 3 − 2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

ϕ

P
ha

se
D

is
tr

ib
ut

io
n

n = 3

− 3 − 2 − 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

ϕ

P
ha

se
D

is
tr

ib
ut

io
n

n=4

(a) (b)

(c) (d)

(e)

Figure 2. Plots of
∣∣∣�RS

n (−q− 1
2 eiϕ; q)

∣∣∣2
as a function of the angle ϕ ∈ [−π, π ] with n ∈ [0, 4]

and different values of q, such as, for example, q = 0.5 (dot-dashed line), 0.7 (dashed line) and
0.9 (solid line). In particular, these plots show how the curves associated with each n of a
q-deformed HO are affected by the parameter q ∈ (0, 1). It is worth noting that such a phase
distribution is a well-behaved function for both variables n and ϕ defined on a compact support,
and it has a specular reflection (or symmetric behaviour) at the origin ϕ = 0.

an argument, figure 2 shows this particular phase distribution as a function of the angular
variable ϕ ∈ [−π, π ] and different values of q, where the excitation degree n of the
q-deformed HO is restricted into the closed interval [0, 4]—see figures 2(a)–(e).

(ii) The three-term recurrence relation (3) can be promptly adapted for {Rn(z; q)}n∈N as
follows:

Rn+1(z; q) =
(

q

1 − qn+1

) 1
2 {

(1 + z)Rn(z; q) − [q(1 − qn)]
1
2 zRn−1(z; q)

}
.

9
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Furthermore, after some calculations based on the results obtained in [43] for the RS
polynomials, it is easy to reach the additional relations

Rn(z; q) − Rn(qz; q) = [q(1 − qn)]
1
2 zRn−1(z; q),

Rn(qz; q) − qnRn(z; q) = [q(1 − qn)]
1
2 Rn−1(qz; q),

Rn(qz; q) − Rn(q
2z; q) = [q(1 − qn)]

1
2 qzRn−1(qz; q),

Rn(z; q) − Rn(q
2z; q) = q(1 − qn)zRn(z; q) + [q(1 − qn)]

1
2 (1 − qz)zRn−1(z; q).

In particular, these identities show how certain recurrence relations are modified by the
scaling factors q and q2.

(iii) This behaviour can also be verified for the weight function M (z; q), namely, scaling
factors involving odd and even powers of the parameter q also modify equations (14) and
(15)—or, in other words, they change the quasi-period of the Jacobi theta functions. In
such cases, if one considers r an integer number, we obtain

(a) q2r -case

F(q2rz; q) = irq− 1
2 r(r+ 1

2 )z− r
2 F(z; q)

G(q2r z; q) = (−i)rq− 1
2 r(r+ 1

2 )z− r
2 G(z; q)

M (q2rz; q) = (−1)rq−r(r+ 1
2 )z−rM (z; q)

and

(b) q2r+1-case

F(q2r+1z; q) = ir+ 1
2 q− 1

2 (r+ 1
2 )(r+1)z− 1

2 (r+ 1
2 )F(z; q)

G(q2r+1z; q) = (−i)r+ 1
2 q− 1

2 (r+ 1
2 )(r+1)z− 1

2 (r+ 1
2 )G(z; q)

M (q2r+1z; q) = (−1)r+ 1
2 q−(r+ 1

2 )(r+1)z−(r+ 1
2 )M ∗(z; q).

Note that scaling factors containing odd powers of q change the phase of the complex
function M (z; q). Consequently, this result will bring some implications for the algebraic
properties of �RS

n (z; q) and also will be responsible for the small change made in the
usual definition of the Jackson’s q-derivative [9, 10].

(iv) Adiga and coworkers [2, p 29] have established and proved several properties originated
from Ramanujan’s theorems on

f (a, b) :=
∑
	∈Z

a
1
2 	(	+1)b

1
2 	(	−1),

where |ab| < 1 (we retain the original notation). Since a and b denote two complex
variables in such a case, if one sets a = q

1
2 eiϕ and b = q

1
2 e−iϕ , it is immediate to verify

that f (a, b) coincides exactly with equation (11), i.e.,

f
(
q

1
2 eiϕ, q

1
2 e−iϕ

) = ∣∣M (−q− 1
2 eiϕ; q

)∣∣2 = |E (ϕ; q)|2 = ϑ3

(
ϕ

2

∣∣∣∣q 1
2

)
.

This particular connection allows us to increase the number of properties related to the
Szegö measure (if one compares with those obtained in this work), as well as to derive
new scaling relations.

10
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3.2. Jackson’s q-derivative

The next step consists in introducing a particular choice for Jackson’s q-derivative through
the action of a certain q-differential operator Dq2 on an arbitrary complex function φ(z; q) as
follows3:

Dq2φ(z; q) := φ(z; q) − φ(q2z; q)

z(1 − q2)
. (21)

It is worth mentioning that some useful rules of q-differentiation, analogous to those verified
for ordinary differentiation, can also be directly obtained in the context of q-calculus [44, 45].
Among them, let us focus on two basic rules which have an important role in our calculations,
that is, the sum rule

Dq2 [φ1(z; q) + φ2(z; q)] = Dq2φ1(z; q) + Dq2φ2(z; q) (22)

and the q-version of the Leibnitz rule

Dq2 [φ1(z; q)φ2(z; q)] = [Dq2φ1(z; q)]φ2(z; q) + φ1(q
2z; q)[Dq2φ2(z; q)]

= [Dq2φ1(z; q)]φ2(q
2z; q) + φ1(z; q)[Dq2φ2(z; q)]. (23)

As a first task, let us determine the action of the q-differential operator Dq2 on the polynomial
Rn(z; q), that is,

Dq2Rn(z; q) = q

1 + q
[n]qRn(z; q) +

(
q

1 − q

) 1
2 1 − qz

1 + q
[n]1/2

q Rn−1(z; q) (24)

where [n]q := 1−qn

1−q
stands for the q-number [44, 45]. The second task then consists in

finding out an expression for Dq2M (z; q) through the formal results obtained in the previous
discussion about scaling factors,

Dq2M (z; q) = 1 + q
3
2 z

q
3
2 z2(1 − q2)

M (z; q). (25)

Consequently, the action of Dq2 on �RS
n (z; q) can now be promptly obtained with the help of

the q-Leibnitz rule, i.e.,

Dq2�RS
n (z; q) = [Dq2Rn(z; q)]M (q2z; q) + Rn(z; q)[Dq2M (z; q)].

In this way, substituting equations (24) and (25) into this expression and after some minor
adjustments in our calculations, we finally get the relations

Dq2�RS
n (z; q) = 1 − qz

(
1 − q

1
2 − qn

)
q

3
2 z2(1 − q2)

�RS
n (z; q) −

(
[n]q

1 − q

) 1
2 1 − qz

qz(1 + q)
�RS

n−1(z; q)

and

Dq2�RS
n (z; q) = −1 − q

(
z + q

1
2 + qn

)
q

3
2 z(1 − q2)

�RS
n (z; q) +

(
[n + 1]q
1 − q

) 1
2 1 − qz

q2z2(1 + q)
�RS

n+1(z; q)

for any q ∈ (0, 1) and n ∈ N. Note that both identities not only depend on the degrees n
and n ∓ 1, but also preserve the phase of the orthogonalized RS functions—this fact being, in
particular, a direct consequence of the scaling relations derived for M (z; q). The comparison
of these results leads us to verify that �RS

n (z; q) satisfies a three-term recurrence relation
exactly equal to that obtained for Rn(z; q).
3 It is important to stress that there exist different versions of Jackson’s q-derivative in the literature covering a wide
range of applications in specific scenarios of mathematics and physics. For instance, Gelfand and coworkers [6] have
proposed a two-parameter q-differential operator Dr,s whose action on φ(z; q) obeys the mathematical prescription

Dr,sφ(z; q) := φ(rz; q) − φ(sz; q)

z(r − s)
.

Note that Dq2 represents a particular case of Dr,s since Dq2 ≡ D1,q2 .

11
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3.3. Lowering and raising operators

As a last step in our calculations, let us now construct the q-differential representations of
the lowering and raising operators associated with

{
�RS

n (z; q)
}

n∈N
, as well as the respective

representation for the q-deformed number operator. For this intent, both the results obtained
for Dq2�RS

n (z; q) are taken into account in this process, asserting that

L̂n(z; q) := 1 − qz
(
1 − q

1
2 − qn

) − q
3
2 z2(1 − q2)Dq2

[q(1 − q)]
1
2 (1 − qz)z

(26)

and

R̂n(z; q) := q
1
2 z

[
1 − q

(
z + q

1
2 + qn

)
+ q

3
2 z(1 − q2)Dq2

]
(1 − q)

1
2 (1 − qz)

(27)

represent—within the range of possibilities related to the definition of Jackson’s q-derivative
applied to the problem under scrutiny—two legitimate q-differential representations of the
lowering (B) and raising (B†) operators, respectively, whose actions on the RS functions
result in4

B�RS
n (z; q) ≡ L̂n(z; q)�RS

n (z; q) = [n]1/2
q �RS

n−1(z; q),

B†�RS
n (z; q) ≡ R̂n(z; q)�RS

n (z; q) = [n + 1]1/2
q �RS

n+1(z; q).

Moreover, if one defines

N̂n(z; q) := R̂n(z; q)L̂n(z; q) (28)

as the number operator Nq in its q-differential form, it is immediate to show that

Nq�
RS
n (z; q) ≡ N̂n(z; q)�RS

n (z; q) = [n]q�
RS
n (z; q).

Such q-differential representations can be considered as a particular realization (within a wide
class of representations with different applications in mathematics and physics) of the IACK
algebra [20] here characterized by the commutation relations

• q-commutation relation
(
[X, Y]q ≡ XY − qYX

)
[B, B†]q = 1, [B, Nq]q = B, [Nq, B†]q = B†, (29)

• standard commutation relation ([X, Y] ≡ XY − YX)

[B, B†] = 1 − (1 − q)Nq, [Nq, B] = −[1 − (1 − q)Nq ]B,

[Nq, B†] = B†[1 − (1 − q)Nq]. (30)

Next, we will discuss certain relevant points related to the results previously obtained in this
paragraph.

Our first comment refers to the q-differential forms determined for the lowering, raising
and number operators and their dependences on the degree n, this fact being interpreted
as a direct consequence of the definition employed in this work for the RS functions and its
inherent properties—indeed, the expressions forDq2�RS

n (z; q) already bring such dependence.
Besides, the energy eigenvalues [20, 29]

En = 2 − (1 + q)qn

1 − q
E0 (E0 = h̄ω0/2)

4 Although the q-differential representations L̂n(z; q) and R̂n(z; q) present an explicit dependence on the discrete
variable n (which certainly represents a possible drawback in our algebraic approach), it is worth stressing that the
matrix elements of the raising and lowering operators can always be evaluated via the RS-functions representation,
and they are sufficient to properly and uniquely determine such operators.

12
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of this particular q-deformed HO present a nonlinear dependence on n and its energy spectrum
is not equally spaced, namely

�n := En+1 − En

E0
= (1 + q)qn.

In principle, such arguments should be sufficient to explain qualitatively the functional forms
of equations (26) and (27).

The second comment is related to the commutation relations (29) and (30), where it is
clear that both relations are equivalent only in the contraction limit q → 1− (in this limit,
we recover the Heisenberg–Weyl algebra h4); furthermore, analogous commutation relations
were also obtained in [40] for the RS polynomials. As a last remark, let us mention that
Floreanini and Vinet [37] have developed a quantum-algebraic framework for a finite set of
q-special functions, where the realizations of the underlying algebras are given in terms of
operators acting on vector spaces of complex functions. In this sense, the results discussed
here may represent an important contribution to that framework since they allow us to open a
new promising chapter on the angular representations in quantum mechanics.

4. Coherent states

In accordance with the algebraic approach developed until now, let us construct in this section a
class of Barut–Girardello coherent states [51] related to the RS functions which are eigenstates
of the lowering operator B with eigenvalues μ ∈ C, that is,

BFμ(z; q) = μFμ(z; q). (31)

Within this context, the complex function Fμ(z; q) can be properly expanded in terms of the
complete set

{
�RS

n (z; q)
}

n∈N
as follows [23]:

Fμ(z; q) =
∑
n∈N

Cn(μ; q)�RS
n (z; q). (32)

The coefficients {Cn(μ; q)}n∈N∗ are then determined by means of equation (31), while the
coefficient C0(μ; q) results from the orthogonality relation (16). Consequently, such a
mathematical procedure leads us to obtain

Cn(μ; q) = e−1/2
q ((1 − q)|μ|2) μn√

[n]q!
,

where eq(x) := (x; q)−1
∞ defines a q-exponential function which converges absolutely for

q ∈ (0, 1) and |x| < 1 [9, p 9]. Therefore, if one substitutes these coefficients on the
right-hand side of equation (32) and takes into account the identity∑

n∈N

Hn(z; q)

[√
q(1 − q)μ

]n

(q; q)n
= (√

q(1 − q)μ,
√

q(1 − q)μz; q
)−1
∞ ,

which, as has been pointed out in section 2, can be readily attained via equation (2), we finally
obtain the entire function

Fμ(z; q) = e
−1/2
q ((1 − q)|μ|2)M (z; q)√

2π
(√

q(1 − q)μ,
√

q(1 − q)μz; q
)
∞

. (33)

Note that equations (32) and (33) represent two different forms of expressing Fμ(z; q), and
that |Cn(μ; q)|2 is associated with the excitation probability distribution for the q-deformed
coherent state. In the following, let us present at least two inherent algebraic properties of
these particular coherent states.

13
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The first property is a direct consequence of expansion (33) and corresponds to the formula
for the scalar product∫ π

−π

F ∗
ν

(−q− 1
2 eiϕ; q

)
Fμ

(−q− 1
2 eiϕ; q

)
dϕ = eq((1 − q)μν∗)

[eq((1 − q)|μ|2)eq((1 − q)|ν|2)] 1
2

, (34)

from which we can infer the inequality

0 <
|eq((1 − q)μν∗)|2

eq((1 − q)|μ|2)eq((1 − q)|ν|2) � 1.

Note that this overlap probability is equal to one for ν = μ (normalizability condition of
the scalar product) and falls to zero when |μ − ν|2 becomes large in the limit q → 1−;
in other words, the coherent states {Fμ(z; q)}μ∈C are not orthogonal. Gray and Nelson
[24] obtained an analogous mathematical result for the scalar product of coherent states
associated with the q-deformed HO, whose commutation relations are characterized by
AA† − q−1/2A†A = q−N/2, [N, A†] = A†, and [N, A] = −A. Such a result is not a mere
coincidence since both approaches can be considered as particular cases of the generalized
q-deformed Heisenberg–Weyl algebra U(α,β,γ )

q (h4) [29].
The next property assures the implicit resolution of unity (or completeness relation) for

the coherent states defined by means of the entire function Fμ(z; q), namely∫
Dq

F ∗
μ(w; q)Fμ(z; q)d2σq(μ) = lim

ε→1−
Kε(w, z; q), (35)

where

Dq =
{
μ = |μ|eiθ : |μ|2 ∈

[
0,

1

q − 1

)
and θ ∈ [0, 2π)

}
corresponds to the integration domain in the complex plane,

d2σq(μ) = eq((1 − q)|μ|2)
eq((1 − q)q|μ|2)

dq(|μ|2) dθ

2π
(36)

its respective measure [26], and Kε(w, z; q) represents the bilinear kernel (17). To demonstrate
this specific identity, we first substitute expansion (32) into the left-hand side of equation (35)
and then carry out, subsequently, the integration over the angle variable θ . This common
procedure permits us to reduce the integration over the domain Dq in the Jackson q-integral
[23, 45]

Iq(n) =
∫ 1

1−q

0

|μ|2n

eq((1 − q)q|μ|2)dq(|μ|2) = 1

(1 − q)n

∑
k∈N

qk(n+1)

eq(qk+1)
.

As an intermediate stage in our proof, let us now consider the result derived in [9] for the
q-exponential function eq(q

k+1), i.e., e−1
q (qk+1) = (q; q)∞/(q; q)k . Consequently,

substituting this result into Iq(n), it is then immediate to show that

Iq(n) = (q; q)∞
(1 − q)n

∑
k∈N

qk(n+1)

(q; q)k
= (q; q)∞

(1 − q)n(qn+1; q)∞
= (q; q)n

(1 − q)n
= [n]q!.

So, after some minor adjustments in our calculations, the right-hand side of equation (35) can
be promptly reached.

To finish this section, let us discuss three important points raised by the identity (35). The
first point corresponds to the resolution of unity for the coherent states which is implicitly
demonstrated in our evaluations. In its turn, combining this result with the first property, we
can conclude that equation (31) produces a special set of overcomplete q-deformed coherent

14
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states. The second point is entirely related to the term appearing on the right-hand side of
equation (35): it reflects the normalization condition for the complex representations used
in this work. Finally, the last point is associated with the evidence that d2σq(μ) may not
be unique as some studies that appeared in the literature [27, 28] indicate. In fact, different
integration measures can produce distinct integrals Iq(n) whose integrands, in their turn, are
related to solutions of Stieltjes and Hausdorff moment problems [55, 56].

5. Phase states

Previously, in section 3, we have established the q-differential forms for the lowering, raising
and number operators whose respective actions on the RS functions resemble those usually
obtained for the annihilation, creation and number operators when acting on the wavefunctions{
�HO

n (x;α)
}

n∈N
associated with the usual harmonic oscillator. This particular analogy leads

us to investigate the possibility of constructing a polar decomposition for the lowering (raising)
operator B (B†) through the equivalence relation B ≡ [N+1]1/2

q E−(B† ≡ E+[N+1]1/2
q ), where

N denotes the standard number operator5. Moreover, E∓ represent two ‘exponential’ operators
which will be explored adequately in this section. It is important to stress that the underlying
problems of this specific decomposition and their possible solutions with convenient inherent
mathematical properties were extensively discussed in the literature [49, 50]. Here, our focus
will be the construction of orthogonal eigenstates related to the q-deformed cosine and sine
operators, in analogy with the results discussed in [46, 47], namely

C := 1

2
(E− + E+) and S := 1

2i
(E− − E+) , (37)

as well as the calculation of certain mean values pertinent to C and S which allow us to
determine some intrinsic properties of the coherent states described in section 4.

Initially, let us assume that E∓ acting on the RS functions �RS
n (z; q) results in the identity

E∓�RS
n (z; q) ≡ �RS

n∓1(z; q), i.e., its action decreases/increases the excitation degree n of the
q-deformed HO by one [46]. The next step then consists in solving the eigenvalue equation

CXγ (z; q) = cos(γ )Xγ (z; q) (38)

following the mathematical recipe described in [47]. Note that {Xγ (z; q)}γ∈[0,π] can be
expanded in terms of the complete set

{
�RS

n (z; q)
}

n∈N
, and their respective coefficients

determined in order to obey the eigenvalue equation (38). Thus, after some nontrivial algebra,
we obtain

Xγ (z; q) =
√

2

π

∑
n∈N

sin[(n + 1)γ ]�RS
n (z; q), (39)

which satisfies not only the orthogonality relation∫ π

−π

X ∗
γ ′

(−q− 1
2 eiϕ; q

)
Xγ

(−q− 1
2 eiϕ; q

)
dϕ = δ(γ ′ − γ ) (40)

but also the resolution of unity implicitly expressed as∫ π

0
X ∗

γ (w; q)Xγ (z; q) dγ = lim
ε→1−

Kε(w, z; q). (41)

5 It is important to mention that Nq ≡ B†B coincides with the standard number operator N only in the limit q → 1−
[29]. In this case, the operator N is subjected to the commutation relations [N, B] = −B and [N, B†] = B†, which
differ, in their turn, from those obtained in equation (30) for Nq .
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Now, let us mention an important feature inherent to expansion (39): it vanishes at the points
γ = 0 or π , and this fact implies the non-existence of singularities at these points since there
are no states related to them [47].

The construction process of the eigenfunctions related to S follows along similar lines,
namely, they are solutions of the eigenvalue equation

SYγ (z; q) = sin(γ )Yγ (z; q) (42)

whose expansion in terms of the RS functions obeys the equation

Yγ (z; q) = i

√
2

π

∑
n∈N

ei(n+1) π
2 sin

[
(n + 1)

(
γ − π

2

)]
�RS

n (z; q). (43)

In analogy with properties (40) and (41) we also find the following relations:∫ π

−π

Y ∗
γ ′

(−q− 1
2 eiϕ; q

)
Yγ

(−q− 1
2 eiϕ; q

)
dϕ = δ(γ ′ − γ ), (44)

∫ π
2

− π
2

Y ∗
γ (w; q)Yγ (z; q) dγ = lim

ε→1−
Kε(w, z; q). (45)

It is worth stressing that the eigenfunctions here obtained for the Hermitian operators C and S
depend strongly on the action of E∓ upon the complete set

{
�RS

n (z; q)
}

n∈N
. In other words,

different polar decompositions for the lowering operator (as well as distinct assumptions about
the action of E∓) lead us to derive different expressions for Xγ (z; q) and Yγ (z; q). This fact
was properly explored by Bergou and Englert [48] within the Wigner function context and
its asymptotic form for a quantum operator, where, in particular, the authors showed how to
construct different phase operators related to the usual HO.

6. Applications

6.1. Mean values

In the following, we derive a set of closed-form expressions for certain moments related to the
cosine and sine operators evaluated via coherent states {Fμ(z; q)}μ∈C. Our main task then
consists in computing initially some specific mean values involving C and S by means of the
auxiliary relation

〈O〉μ =
∫ π

−π

F ∗
μ

(−q− 1
2 eiϕ; q

)
OFμ

(−q− 1
2 eiϕ; q

)
dϕ. (46)

It is important to mention that the action of such operators on the coherent states is not
trivial, namely it presents peculiarities inherent to the nonunitarity of E−. So, after lengthy
calculations, we obtain for μ = |μ|eiθ the exact results [25]

〈C〉μ = |μ|e−1
q ((1 − q)|μ|2)Mq(|μ|2) cos(θ),

〈S〉μ = |μ|e−1
q ((1 − q)|μ|2)Mq(|μ|2) sin(θ),

〈C2〉μ = 1

2
− 1

4
e−1
q ((1 − q)|μ|2) +

1

2
|μ|2 e−1

q ((1 − q)|μ|2)Nq(|μ|2) cos(2θ),

〈S2〉μ = 1

2
− 1

4
e−1
q ((1 − q)|μ|2) − 1

2
|μ|2 e−1

q ((1 − q)|μ|2)Nq(|μ|2) cos(2θ),

〈C2 + S2〉μ = 1 − 1

2
e−1
q ((1 − q)|μ|2),
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〈C2 − S2〉μ = |μ|2 e−1
q ((1 − q)|μ|2)Nq(|μ|2) cos(2θ),

〈CS + SC〉μ = |μ|2 e−1
q ((1 − q)|μ|2)Nq(|μ|2) sin(2θ),

〈CS − SC〉μ = i

2
e−1
q ((1 − q)|μ|2),

where the functions Mq(|μ|2) and Nq(|μ|2) are here defined by the power series

Mq(|μ|2) =
∑
n∈N

|μ|2n

[n]q!([n + 1]q)
1
2

and Nq(|μ|2) =
∑
n∈N

|μ|2n

[n]q!([n + 2]q[n + 1]q)
1
2

.

Such mean values can be interpreted as the q-deformed version of those obtained by Carruthers
and Nieto [47]. Furthermore, for q → 1− and |μ|2 � 1, these exact results reach the
asymptotic limits (e.g., see Lynch [49, p 378] for further discussion)

〈C〉μ ≈ cos(θ), 〈S〉μ ≈ sin(θ), 〈C2〉μ ≈ cos2(θ), 〈S2〉μ ≈ sin2(θ), 〈C2 + S2〉μ ≈ 1,

〈C2 − S2〉μ ≈ cos(2θ), 〈CS + SC〉μ ≈ sin(2θ), 〈CS − SC〉μ ≈ 0.

Figure 3 shows the plots of the first six mean values versus |μ|2 ∈ [0, 5] with θ = π
3 fixed, and

different values of q such that (1 − q)|μ|2 < 1 is satisfied. The asymptotic limits observed
in the numerical calculations are in agreement with those predicted theoretically, and this
fact will be our reference in the study of Robertson–Schrödinger uncertainty relations for the
cosine and sine operators.

6.2. Symmetrical uncertainty relation

As a last topic of interest, let us now study qualitatively the Robertson–Schrödinger uncertainty
relation [57]

UCS := VCVS − (VCS)2 � 1

4
|〈[C, S]〉μ|2 (47)

through the mean values established for the coherent states, where

VC ≡ 〈C2〉μ − 〈C〉2
μ, VS ≡ 〈S2〉μ − 〈S〉2

μ, and VCS ≡
〈

1

2
{C, S}

〉
μ

− 〈C〉μ〈S〉μ
represent the variances related to the cosine and sine operators. In addition, the terms 〈[C, S]〉μ
and 〈{C, S}〉μ correspond to the commutation and anticommutation relation mean values,
respectively. Thus, after a straightforward calculation, we find that UCS does not depend on
the angle variable θ , but only on the parameters q and |μ|. Indeed, using the results previously
obtained in the last section, if one denotes

a = 1

2
− 1

4
e−1
q ((1 − q)|μ|2),

b = 1

2
|μ|2e−1

q ((1 − q)|μ|2)Nq(|μ|2),
c = |μ|e−1

q ((1 − q)|μ|2)Mq(|μ|2),
the left-hand side of equation (47) can be properly written as UCS = (a − b)(a + b − c2).
It is worth emphasizing that our numerical evaluations corroborate the inequality UCS �
1
4 |〈[C, S]〉μ|2. Moreover, for q → 1− and |μ|2 � 1, we obtain |〈[C, S]〉μ|2 → 0, which
implies that C and S can be considered as commutative variables [47].

Next, let us derive a symmetrical relation which involves a particular combination of the
number-cosine and number-sine Robertson–Schrödinger uncertainty relations, namely,

VNVC − (VNC)
2 � 1

4
|〈[N, C]〉μ|2 = 1

4
〈S〉2

μ, (48)
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Figure 3. Plots of first- and second-order moments involving the cosine and sine operators as a
function of 0 � |μ|2 � 5 with θ = π

3 fixed, and different values of q. In such examples, the
dot-dashed, dashed and solid lines correspond, respectively, to the values of q = 0.8, 0.85 and 0.9.
Note that the distinct asymptotic values reached in each case exhibit a strong dependence on the
parameters q and |μ|2, this fact being associated with the convergence criterion (1 − q)|μ|2 < 1
adopted for the q-exponential function.

VNVS − (VNS)2 � 1

4
|〈[N, S]〉μ|2 = 1

4
〈C〉2

μ (49)

where VN ≡ 〈N2〉μ−〈N〉2
μ represents the variance related to the nondeformed number operator,

with

VNC ≡
〈

1

2
{N, C}

〉
μ

− 〈N〉μ〈C〉μ and VNS ≡
〈

1

2
{N, S}

〉
μ

− 〈N〉μ〈S〉μ
being the corresponding covariances associated with the number-cosine and number-sine
operators. Our next step consists in adding (48) and (49) with the aim of obtaining the
symmetrical relation

Usym ≡ VN(VC + VS) − [
(VNC)

2 + (VNS)2
]

〈S〉2
μ + 〈C〉2

μ

� 1

4
(50)
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Figure 4. Plots of Usym (solid line) as a function of |μ|2 ∈ [0, 4] for different values of q. In all
cases, the dashed line corresponds to the constant value 1

4 , which reflects the pattern behaviour
observed for the nondeformed coherent states. Note that for values of q close to 1−, the filled
space (grey colour) between the curves diminishes, and when |μ|2 � 1 we obtain the asymptotic
limit Usym → 1

4 .

between C and S, which does not depend on the angle variable θ . Indeed, in order to prove
this assertion it is sufficient to calculate the additional mean values

〈Nk〉μ = e−1
q ((1 − q)|μ|2)

∑
n∈N

nk|μ|2n

[n]q!
(k � 0),〈

1

2
{N, C}

〉
μ

= |μ|
2

e−1
q ((1 − q)|μ|2)Lq(|μ|2) cos(θ),〈

1

2
{N, S}

〉
μ

= |μ|
2

e−1
q ((1 − q)|μ|2)Lq(|μ|2) sin(θ),

with Lq(|μ|2) given by the power series

Lq(|μ|2) =
∑
n∈N

(2n + 1)|μ|2n

[n]q!([n + 1]q)
1
2

.

Figure 4 illustrates the symmetrical relation (50) as a function of |μ|2 ∈ [0, 4] for (a) q = 0.80,
(b) q = 0.85, (c) q = 0.90 and (d) q = 0.95. In all these pictures, the solid line corresponds
to the left-hand side of the inequality (50), while the right-hand side is represented by
the dashed line. Now, let us say a few words about the filled space (grey colour) between
the curves: since the convergence criterion 0 � (1 − q)|μ|2 < 1 restricts the domain of the
variables q and |μ|2, we can verify that the area related to this space decreases for values
of q near to 1− and 0 < |μ|2 � 4—see figures 4(a) and (b). A plausible explanation of
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this fact leads us to the q-deformed coherent states—here represented by the eigenfunctions
{Fμ(z; q)}μ∈C—and their inherent properties, i.e., these particular states are not minimum
uncertainty states (excepting the vacuum state |μ| = 0), which justifies, in principle, the
appearance of this specific region between the curves and its possible variation. As a last
comment, let us mention that VN �= 〈N〉μ in such a case, which implies that {|Cn(μ; q)|2}n∈N

are not Poisson distributed.

7. Concluding remarks

Within the scope of special functions in mathematics and physics, although the Rogers–
Szegö polynomials play an important role in specific problems related to q-deformed algebras,
they still remain practically unexplored if one considers the wide range of applications in
quantum mechanics. A remarkable property of this sort of orthogonal polynomials states that
{Hn(z; q)}n∈N are orthogonalized on the unit circle (pictorially represented in the complex
plane) by means of a particular measure, the Jacobi ϑ3-function [42]. In the quantum-
mechanical context, the benefits of this kind of angular representation, if employed in the
fascinating problem of the polar decomposition of the annihilation operator concerning the
usual harmonic oscillator (or, in other words, on the existence of a well-defined operator
corresponding to the phase observable of the electromagnetic field in quantum optics), were
not investigated until now or even mentioned in the literature. Here, we have presented an
appreciable set of new interesting results which have potential applications not only in the
investigative process on the different polar decompositions of the q-deformed annihilation
operator [48], where the aforementioned angular representation has an important role, but also
in the study of a q-analogue to the Jordan–Schwinger mapping for the angular momentum
operators [29].

Once the Szegö measure can be decomposed in the complex plane, it is natural to construct
a set of complex functions that not only embodies such a decomposition but also satisfies
automatically an orthogonality relation analogous to that derived for the RS polynomials.
Before we perform such a task, some essential mathematical properties inherent to these
polynomials have been adequately reviewed in our explanatory notes; in addition, we have
also obtained two new integral representations for the RS polynomials which establish an
important link with the q-Pochhammer symbol and the Stieltjes–Wigert polynomials [43]. In
fact, such results have paved the way for subsequent developments towards a solid framework
of coherent and phase states conceived within a purely algebraic approach.

Named as Rogers–Szegö functions and here denoted by
{
�RS

n (z; q)
}

n∈N
, our object

of study was then defined in terms of the product Rn(z; q)M (z; q), where the first term
Rn(z; q) presents a direct connection with the RS polynomials, while the second term M (z; q)

represents a complex weight function. The particular parametrization z = −q− 1
2 eiϕ with

ϕ ∈ [−π, π ] has allowed us to verify that �RS
n (z; q) can be orthogonalized on a unit circle

for any q ∈ (0, 1). Furthermore, we have also established a set of interesting formal results
that characterize its inherent algebraic properties. For example, the discussion about the
completeness relation pertaining to the RS functions was carried out by means of the bilinear
kernel Kε(w, z; q), which obeys certain properties that lead us to reveal the normalization
condition for the complex representations used in this work to describe such functions. In
the following, we have analysed separately each term of �RS

n (z; q) with the aim of obtaining
not only new recurrence relations for Rn(z; q) but also some scaling relations for M (z; q)

that involve odd and even powers of the parameter q. As a by-product of this analysis, we
have introduced a specific definition of Jackson’s q-derivative that permits us to determine two
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closed-form expressions which connect the action of Dq2 over �RS
n (z; q) with the different

excitation degrees n and n ∓ 1, preserving, in its turn, the phase of the RS functions. So,
the construction of q-differential forms of the lowering, raising and number operators from
these results can be considered, at this stage, as an immediate process. Those differential
representations were then interpreted as the particular realization of the IACK algebra which
was characterized, within this context, through well-established commutation relations.

The applications of this algebraic approach in the construction process of coherent
and phase states certainly represented an ideal scenario within our investigative theoretical
framework. In this way, we adopted in a first stage the mathematical procedure developed by
Barut–Girardello [51] for the coherent states with the main aim of establishing the respective
eigenfunctions {Fμ(z; q)}μ∈C related to the lowering operator B. Such eigenfunctions were
initially conceived as an infinite expansion of the Rogers–Szegö functions whose coefficients
satisfy a proper eigenvalue equation which leads us to obtain the excitation probability
distribution for the q-deformed coherent state. Besides, we evaluated the overlap probability
and also discussed the completeness relation in this case. Hounkonnou and Ngompe
Nkouankam [30] recently carried out an interesting study on the generalized hypergeometric
coherent states, where a (q, ν)-deformation was introduced in such a case. In that work,
the authors employed basically some theoretical methods of quantum optics for investigating
the quantum statistical properties as well as the Husimi distribution (and its corresponding
phase distribution) of those particular coherent states. Such an analysis can also be applied
within the context here discussed, this fact being the object of future investigations.

Finally, let us now briefly comment on the results obtained for the phase states. Basically,
we have followed the Carruthers–Nieto approach [47] for the construction of the eigenstates
related to the q-deformed cosine and sine operators, whose respective phase distributions
have exhibited analogous behaviours but with distinct signatures (both the distributions are
π
2 -dephased) in the γ ϕ-plane. Next, we have discussed two basic properties inherent to the
eigenstates {Xγ (z; q)}γ∈[0,π] and {Yγ (z; q)}γ∈[− π

2 , π
2 ] which reflect their orthogonality and

completeness (or resolution of unity) relations. In addition, we have applied our results in
order to derive a set of closed-form expressions for certain mean values associated with the
aforementioned cosine and sine operators via q-deformed coherent states, which allow us to
study the Robertson–Schrödinger uncertainty relation. To complete this initial study, we have
also derived a symmetrical uncertainty relation (here involving the variances and covariances of
the cosine, sine and nondeformed number operators) that corroborates our previous conclusions
on those coherent states: once the convergence criterion 0 � (1 − q)|μ|2 < 1 is satisfied, they
are not minimum uncertainty states (except for the vacuum state |μ| = 0).

Although the mathematical significance of q deformation is presently approached as being
a parameter responsible for the distribution width, its physical appeal is not quite clear. In
fact, even the squeezing and/or nonlinear effects attributed to q deserve to be investigated
in detail [16]. Furthermore, the difficulties in solving the intriguing problem related to the
phase operator in quantum mechanics still remain the same [49]. In this sense, it is worth
stressing that the compilation of results here presented not only corroborates and generalizes
those obtained in [25, 47], but also represents a concatenated effort in joining two promising
research branches of mathematics and physics, namely the branches devoted to the study of
q-special functions and certain angular representations in quantum theory [58].

In a more pragmatic sense, the previously discussed Rogers–Szegö functions can be seen
to be tailored for describing deformed physical systems where the rotational degree of freedom
has a central role. Indeed, some previous attempts at introducing rotational coherent states have
been put forth in the past whose aim was to treat the dynamics of two-dimensional deformed
systems in molecular physics [59]. In this connection, the use of the algebraic framework
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here developed in such studies of rigid deformed systems dynamics—within the context of
von Neumann–Liouville formalism—seems to be a promising perspective. Moreover, our
results also seem to be quite suitable to deal with the problem of quantum rings [60], where a
single electron can be trapped in a region whose topology is exactly that covered in this work.
In the meantime, it is worth stressing that there exists another path for future research which
will be properly explored in due course.
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Birkhäuser)

Vilenkin N J and Klimyk A U 1992 Representation of Lie Groups and Special Functions: Simplest Lie Groups,
Special Functions and Integral Transforms (Mathematics and its Applications vol 2) (Dordrecht: Kluwer)

23

http://dx.doi.org/10.1088/0305-4470/24/7/015
http://dx.doi.org/10.1088/0305-4470/37/11/012
http://dx.doi.org/10.1088/1751-8113/42/6/065201
http://dx.doi.org/10.1090/S0002-9939-06-08525-X
http://dx.doi.org/10.1088/1751-8113/41/24/244014
http://dx.doi.org/10.1063/1.522937
http://dx.doi.org/10.1088/0305-4470/23/18/002
http://dx.doi.org/10.1103/PhysRevA.51.2410
http://www.arxiv.org/abs/math.QA/9607006
http://dx.doi.org/10.1007/s002200050296
http://www.arxiv.org/abs/math.QA/0307356
http://dx.doi.org/10.1088/0305-4470/35/43/316
http://dx.doi.org/10.1088/0031-8949/73/1/009
http://dx.doi.org/10.1088/1751-8113/42/6/065202
http://dx.doi.org/10.1103/PhysRevA.54.4560
http://dx.doi.org/10.1103/PhysRevA.62.053407
http://dx.doi.org/10.1063/1.2710651
http://dx.doi.org/10.1016/0370-2693(90)92004-3
http://dx.doi.org/10.1142/S0217751X90000039
http://dx.doi.org/10.1007/BF01321858
http://dx.doi.org/10.1006/aphy.1993.1003
http://dx.doi.org/10.1088/0305-4470/27/17/003
http://dx.doi.org/10.1090/S0002-9939-96-03304-7
http://dx.doi.org/10.1590/S0103-97332003000100015
http://dx.doi.org/10.1088/0305-4470/37/50/L01
http://dx.doi.org/10.1112/plms/s1-24.1.171
http://dx.doi.org/10.1112/plms/s1-24.1.337
http://dx.doi.org/10.1112/plms/s1-25.1.318
http://dx.doi.org/10.1112/plms/s1-26.1.15
http://dx.doi.org/10.1007/BF02411676
http://dx.doi.org/10.1103/RevModPhys.40.411
http://dx.doi.org/10.1016/0003-4916(91)90037-9
http://dx.doi.org/10.1016/0370-1573(94)00095-K
http://dx.doi.org/10.1007/BF01646483


J. Phys. A: Math. Theor. 42 (2009) 375206 M A Marchiolli et al

Whittaker E T and Watson G N 2000 Cambridge Mathematical Library: A Course of Modern Analysis
(Cambridge: Cambridge University Press)

[53] Schwinger J 2001 Quantum Mechanics: Symbolism of Atomic Measurements ed B-G Englert (Berlin: Springer)
[54] Ballentine L E 1998 Quantum Mechanics: A Modern Development (Singapore: World Scientific)
[55] Akhiezer N I 1965 The Classical Moment Problem and Some Related Questions in Analysis (London: Oliver

and Boyd)
[56] Klauder J R, Penson K A and Sixdeniers J M 2001 Phys. Rev. A 64 013817
[57] Dodonov V V and Man’ko V I 1989 Invariants and the Evolution of Nonstationary Quantum Systems (Proc.

Lebedev Phys. Inst. Acad. Sci. USSR vol 183) (New York: Nova Science)
[58] Ruzzi M, Marchiolli M A, da Silva E C and Galetti D 2006 J. Phys. A: Math. Gen. 39 9881
[59] Reimers J R and Heller E J 1985 J. Chem. Phys. 83 511

Balzer B, Dilthey S, Stock G and Thoss M 2003 J. Chem. Phys. 119 5795
[60] Lorke A, Luyken R J, Govorov A O, Kotthaus J P, Garcia J M and Petroff P M 2000 Phys. Rev. Lett. 84 2223

24

http://dx.doi.org/10.1103/PhysRevA.64.013817
http://dx.doi.org/10.1088/0305-4470/39/31/016
http://dx.doi.org/10.1063/1.449514
http://dx.doi.org/10.1063/1.1601219
http://dx.doi.org/10.1103/PhysRevLett.84.2223

	1. Introduction
	2. Explanatory notes on the RS polynomials
	3. Algebraic properties of the RS functions
	3.1. Preliminaries
	3.2. Jackson's q-derivative
	3.3. Lowering and raising operators

	4. Coherent states
	5. Phase states
	6. Applications
	6.1. Mean values
	6.2. Symmetrical uncertainty relation

	7. Concluding remarks
	Acknowledgments
	References

